Relationship of postsaccadic oscillation with the state of the pupil inside the iris and with cognitive processing

Author:

Yamagishi Shimpei1,Yoneya Makoto1,Furukawa Shigeto1ORCID

Affiliation:

1. NTT Communication Science Laboratories, Kanagawa, Japan

Abstract

Recent studies using video-based eye tracking have presented accumulating evidence that postsaccadic oscillation defined in reference to the pupil center (PSOp) is larger than that to the iris center (PSOi). This indicates that the relative motion of the pupil reflects the viscoelasticity of the tissue of the iris. It is known that the pupil size controlled by the sphincter/dilator pupillae muscles reflects many aspects of cognition. A hypothesis derived from this fact is that cognitive tasks affect the properties of PSOp due to the change in the state of these muscles. To test this hypothesis, we conducted pro- and antisaccade tasks for human participants and adopted the recent physical model of PSO to evaluate the dynamic properties of PSOp/PSOi. The results showed the dependence of the elasticity coefficient of the PSOp on the antisaccade task, but this effect was not significant for the PSOi. This suggests that cognitive tasks such as antisaccade tasks affect elasticity of the muscle of the iris. We found that the trial-by-trial fluctuation in the presaccade absolute pupil size correlated with the elasticity coefficient of PSOp. We also found the task dependence of the viscosity coefficient and overshoot amount of PSOi, which probably reflects the dynamics of the entire eyeball movement. The difference in task dependence between PSOp and PSOi indicates that the separate measures of these two can be means to distinguish factors related to the oculomotor neural system from those related to the physiological states of the iris tissue. NEW & NOTEWORTHY The state of the eyeball varies dynamically moment by moment depending on underlying neural/cognitive processing. Combining simultaneous measurements of pupil-centric and iris-centric movements and a recent physical model of postsaccadic oscillation (PSO), we show that the pupil-centric PSO is sensitive to the type of saccade task, suggesting that the physical state of the iris muscles reflects the underlying cognitive processes.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3