Network bursts in hippocampal microcultures are terminated by exhaustion of vesicle pools

Author:

Cohen Dror1,Segal Menahem1

Affiliation:

1. Department of Neurobiology, The Weizmann Institute, Rehovot, Israel

Abstract

Synchronized network activity is an essential attribute of the brain. Yet the cellular mechanisms that determine the duration of network bursts are not fully understood. In the present study, synchronized network bursts were evoked by triggering an action potential in a single neuron in otherwise silent microcultures consisting of 4–30 hippocampal neurons. The evoked burst duration, ∼2 s, depended on the recovery time after a previous burst. While interburst intervals of 35 s enabled full-length bursts, they were shortened by half at 5-s intervals. This reduction in burst duration could not be attributed to postsynaptic parameters such as glutamate receptor desensitization, accumulating afterhyperpolarization, inhibitory tone, or sodium channel inactivation. Reducing extracellular Ca2+ concentration ([Ca2+]o) relieved the effect of short intervals on burst duration, while depletion of synaptic vesicles with α-latrotoxin gradually eliminated network bursts. Finally, a transient exposure to high [K+]o slowed down the recovery time following a burst discharge. We conclude that the limiting factor regulating burst duration is most likely the depletion of presynaptic resources.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3