The effect of high-frequency conditioning stimulation of human skin on reported pain intensity and event-related potentials

Author:

van den Broeke Emanuel N.1,van Heck Casper H.2,Ceelen Linda A. J. M.2,van Rijn Clementina M.3,van Goor Harry1,Wilder-Smith Oliver H. G.2

Affiliation:

1. Department of Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands;

2. Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and

3. Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract

High-frequency conditioning electrical stimulation (HFS) of human skin induces an increased pain sensitivity to mechanical stimuli in the surrounding nonconditioned skin. The aim of this study was to investigate the effect of HFS on reported pain sensitivity to single electrical stimuli applied within the area of conditioning stimulation. We also investigated the central nervous system responsiveness to these electrical stimuli by measuring event-related potentials (ERPs). Single electrical test stimuli were applied in the conditioned area before and 30 min after HFS. During electrical test stimulation, the reported pain intensity (numerical rating scale) and EEG (ERPs) were measured. Thirty minutes after conditioning stimulation, we observed a decrease of reported pain intensity at both the conditioned and control (opposite arm) skin site in response to the single electrical test stimuli. In contrast, we observed enhanced ERP amplitudes after HFS at the conditioned skin site, compared with control site, in response to the single electrical test stimuli. Recently, it has been proposed that ERPs, at least partly, reflect a saliency detection system. Therefore, the enhanced ERPs might reflect enhanced saliency to potentially threatening stimuli.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3