Song System Auditory Responses Are Stable and Highly Tuned During Sedation, Rapidly Modulated and Unselective During Wakefulness, and Suppressed By Arousal

Author:

Cardin Jessica A.1,Schmidt Marc F.1

Affiliation:

1. Department of Biology and Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

We used auditory responsiveness in the avian song system to investigate the complex relationship between behavioral state and sensory processing in a high-order sensorimotor brain area. We present evidence from recordings in awake, anesthetized, and sleeping male zebra finches ( Taeniopygia guttata) that auditory responsiveness in nucleus HVc is profoundly affected by changes in behavioral state. In anesthetized and sleeping birds, auditory responses were characterized by an increase in firing rate that was selective for the bird's own song (BOS) and highly stable over time. In contrast, HVc responses during wakefulness were extremely variable and transitioned between undetectable and robust levels over short intervals. Surprisingly, auditory responses in awake birds were not selective for the BOS stimulus. The variability of HVc auditory responses in awake birds suggests that, as in mammals, wakefulness is not a uniform behavioral state. Rather, auditory responsiveness likely is continually influenced by variables such as arousal state. We therefore developed several experimental paradigms in which we could manipulate arousal levels during auditory stimulus presentation. In all cases, arousal suppressed HVc auditory responses. This effect was specific to the song system, as auditory responses in Field L, a primary auditory area that is a source of auditory input to HVc, were unaffected. While arousal acts as a negative regulator of HVc auditory responsiveness, the presence and variability of the responses observed in awake, alert birds suggests that other mechanisms, such as attention, may enhance auditory responsiveness. The interplay between behavioral state and sensory processing may regulate song system responsiveness according to the bird's behavioral and social context.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3