Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis

Author:

Zambanini A.,Cunningham S. L.,Parker K. H.,Khir A. W.,McG. Thom S. A.,Hughes A. D.

Abstract

The study of wave propagation at different points in the arterial circulation may provide useful information regarding ventriculoarterial interactions. We describe a number of hemodynamic parameters in the carotid, brachial, and radial arteries of normal subjects by using noninvasive techniques and wave-intensity analysis (WIA). Twenty-one normal adult subjects (14 men and 7 women, mean age 44 ± 6 yr) underwent applanation tonometry and pulsed-wave Doppler studies of the right common carotid, brachial, and radial arteries. After ensemble averaging of the pressure and flow-velocity data, local hydraulic work was determined and a pressure-flow velocity loop was used to determine local wave speed. WIA was then applied to determine the magnitude, timings, and energies of individual waves. At all sites, forward-traveling (S) and backward-traveling (R) compression waves were observed in early systole. In mid- and late systole, forward-traveling expansion waves (X and D) were also seen. Wave speed was significantly higher in the brachial (6.97 ± 0.58 m/s) and radial (6.78 ± 0.62 m/s) arteries compared with the carotid artery (5.40 ± 0.34 m/s; P < 0.05). S-wave energy was greatest in the brachial artery (993.5 ± 87.8 mJ/m2), but R-wave energy was greatest in the radial artery (176.9 ± 19.9 mJ/m2). X-wave energy was significantly higher in the brachial and radial arteries (176.4 ± 32.7 and 163.2 ± 30.5 mJ/m2, respectively) compared with the carotid artery (41.0 ± 9.4 mJ/m2; P < 0.001). WIA illustrates important differences in wave patterns between peripheral arteries and may provide a method for understanding ventriculo-arterial interactions in the time domain.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference45 articles.

1. The dynamic elastic properties of the arterial wall

2. Arterial tonometry: Review and analysis

3. Collagen and Elastin Content in Canine Arteries Selected from Functionally Different Vascular Beds

4. Reproducibility of carotid artery Doppler frequency measurements.

5. Guyton AC. The autonomic nervous system: cerebral blood flow and cerebrospinal fluid. In: Human Physiology and Mechanisms of Disease. Philadelphia, PA: Saunders, 1992, p. 459–471.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3