Opening mitoKATPincreases superoxide generation from complex I of the electron transport chain

Author:

Andrukhiv Anastasia,Costa Alexandre D.,West Ian C.,Garlid Keith D.

Abstract

Opening the mitochondrial ATP-sensitive K+channel (mitoKATP) increases levels of reactive oxygen species (ROS) in cardiomyocytes. This increase in ROS is necessary for cardioprotection against ischemia-reperfusion injury; however, the mechanism of mitoKATP-dependent stimulation of ROS production is unknown. We examined ROS production in suspensions of isolated rat heart and liver mitochondria, using fluorescent probes that are sensitive to hydrogen peroxide. When mitochondria were treated with the KATPchannel openers diazoxide or cromakalim, their ROS production increased by 40–50%, and this effect was blocked by 5-hydroxydecanoate. ROS production exhibited a biphasic dependence on valinomycin concentration, with peak production occurring at valinomycin concentrations that catalyze about the same K+influx as KATPchannel openers. ROS production decreased with higher concentrations of valinomycin and with all concentrations of a classical protonophoretic uncoupler. Our studies show that the increase in ROS is due specifically to K+influx into the matrix and is mediated by the attendant matrix alkalinization. Myxothiazol stimulated mitoKATP-dependent ROS production, whereas rotenone had no effect. This indicates that the superoxide originates in complex I (NADH:ubiquinone oxidoreductase) of the electron transport chain.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3