Decreased endothelial nitric oxide, systemic oxidative stress, and increased sympathetic modulation contribute to hypertension in obese rats

Author:

da Cunha Natalia Veronez1,Pinge-Filho Phileno2,Panis Carolina2,Silva Bruno Rodrigues3,Pernomian Laena3,Grando Marcella Daruge4,Cecchini Rubens2,Bendhack Lusiane Maria4,Martins-Pinge Marli Cardoso1

Affiliation:

1. Department of Physiological Sciences State University of Londrina, Londrina, PR;

2. Department of Pathological Sciences State University of Londrina, Londrina, PR;

3. Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; and

4. Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil

Abstract

We investigated the involvement of nitric oxide (NO) and reactive oxygen species (ROS) on autonomic cardiovascular parameters, vascular reactivity, and endothelial cells isolated from aorta of monosodium glutamate (MSG) obese rats. Obesity was induced by administration of 4 mg/g body wt of MSG or equimolar saline [control (CTR)] to newborn rats. At the 60th day, the treatment was started with NG-nitro-l-arginine methyl ester (l-NAME, 20 mg/kg) or 0.9% saline. At the 90th day, after artery catheterization, mean arterial pressure (MAP) and heart rate were recorded. Plasma was collected to assess lipid peroxidation. Endothelial cells isolated from aorta were evaluated by flow cytometry and fluorescence intensity (FI) emitted by NO-sensitive dye [4,5-diaminofluoresceindiacetate (DAF-2DA)] and by ROS-sensitive dye [dihydroethidium (DHE)]. Vascular reactivity was made by concentration-response curves of acetylcholine. MSG showed hypertension compared with CTR. Treatment with l-NAME increased MAP only in CTR. The MSG induced an increase in the low-frequency (LF) band and a decrease in the high-frequency band of pulse interval. l-NAME treatment increased the LF band of systolic arterial pressure only in CTR without changes in MSG. Lipid peroxidation levels were higher in MSG and were attenuated after l-NAME. In endothelial cells, basal FI to DAF was higher in CTR than in MSG. In both groups, acetylcholine increased FI for DAF from basal. The FI baseline to DHE was higher in MSG than in CTR. Acetylcholine increased FI to DHE in the CTR group, but decreased in MSG animals. We suggest that reduced NO production and increased production of ROS may contribute to hypertension in obese MSG animals.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3