Upregulation of Na+/Ca2+exchanger and TRPC6 contributes to abnormal Ca2+homeostasis in arterial smooth muscle cells from Milan hypertensive rats

Author:

Zulian Alessandra1,Baryshnikov Sergey G.1,Linde Cristina I.1,Hamlyn John M.1,Ferrari Patrizia2,Golovina Vera A.1

Affiliation:

1. Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; and

2. Prassis-sigma tau Research Institute, Settimo Milanese, Milan, Italy

Abstract

The Milan hypertensive strain (MHS) of rats is a model for hypertension in humans. Inherited defects in renal function have been well studied in MHS rats, but the mechanisms that underlie the elevated vascular resistance are unclear. Altered Ca2+signaling plays a key role in the vascular dysfunction associated with arterial hypertension. Here we compared Ca2+signaling in mesenteric artery smooth muscle cells from MHS rats and its normotensive counterpart (MNS). Systolic blood pressure was higher in MHS than in MNS rats (144 ± 2 vs. 113 ± 1 mmHg, P < 0.05). Resting cytosolic free Ca2+concentration (measured with fura-2) and ATP-induced Ca2+transients were augmented in freshly dissociated arterial myocytes from MHS rats. Ba2+entry activated by the diacylglycerol analog 1-oleoyl-2-acetyl- sn-glycerol (a measure of receptor-operated channel activity) was much greater in MHS than MNS arterial myocytes. This correlated with a threefold upregulation of transient receptor potential canonical 6 (TRPC6) protein. TRPC3, the other component of receptor-operated channels, was marginally, but not significantly, upregulated. The expression of TRPC1/5, components of store-operated channels, was not altered in MHS mesenteric artery smooth muscle. Immunoblots also revealed that the Na+/Ca2+exchanger-1 (NCX1) was greatly upregulated in MHS mesenteric artery (by ∼13-fold), whereas the expression of plasma membrane Ca2+-ATPase was not altered. Ca2+entry via the reverse mode of NCX1 evoked by the removal of extracellular Na+induced a rapid increase in cytosolic free Ca2+concentration that was significantly larger in MHS arterial myocytes. The expression of α12Na+pumps in MHS mesenteric arteries was not changed. Immunocytochemical observations showed that NCX1 and TRPC6 are clustered in plasma membrane microdomains adjacent to the underlying sarcoplasmic reticulum. In summary, MHS arteries exhibit upregulated TRPC6 and NCX1 and augmented Ca2+signaling. We suggest that the increased Ca2+signaling contributes to the enhanced vasoconstriction and elevated blood pressure in MHS rats.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3