Aging impairs flow-induced dilation in coronary arterioles: role of NO and H2O2

Author:

Kang Lori S.,Reyes Rafael A.,Muller-Delp Judy M.

Abstract

Aging contributes significantly to the development of cardiovascular disease and is associated with elevated production of reactive oxygen species (ROS). The beneficial effects of nitric oxide (NO)-mediated vasodilation are quickly abolished in the presence of ROS, and this effect may be augmented with aging. We previously demonstrated an age-induced impairment of flow-induced dilation in rat coronary arterioles. Therefore, the purpose of this study was to determine the effects of O2 scavenging, as well as removal of H2O2, the byproduct of O2 scavenging, on flow-mediated dilation in coronary resistance arterioles of young (4 mo) and old (24 mo) male Fischer 344 rats. Flow increased NO and H2O2 production as evidenced by enhanced diaminofluorescein and dichlorodihydrofluorescein fluorescence, respectively, whereas aging reduced flow-induced NO and H2O2 production. Endothelium-dependent vasodilation was evaluated by increasing intraluminal flow (5–60 nl/s) before and after treatment with the superoxide dismutase mimetic Tempol (100 μM), the H2O2 scavenger catalase (100 U/ml), or Tempol plus catalase. Catalase reduced flow-induced dilation in both groups, whereas Tempol and Tempol plus catalase diminished vasodilation in young but not old rats. Tempol plus deferoxamine (100 μM), an inhibitor of hydroxyl radical formation, reversed Tempol-mediated impairment of flow-induced vasodilation in young rats and improved flow-induced vasodilation in old rats compared with control. Immunoblot analysis revealed increases in endogenous superoxide dismutase, catalase, and nitrotyrosine protein levels with aging. Collectively, these data indicate that NO- and H2O2-mediated flow-induced signaling decline with age in coronary arterioles and that elevated hydroxyl radical formation contributes to the age-related impairment of flow-induced vasodilation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3