A new hemodynamic model for the study of cerebral venous outflow

Author:

Gadda G.1,Taibi A.1,Sisini F.1,Gambaccini M.1,Zamboni P.2,Ursino M.3

Affiliation:

1. Department of Physics and Earth Sciences, University of Ferrara, Ferrara, Italy;

2. Vascular Diseases Center, University of Ferrara, Ferrara, Italy; and

3. Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy

Abstract

We developed a mathematical model of the cerebral venous outflow for the simulation of the average blood flows and pressures in the main drainage vessels of the brain. The main features of the model are that it includes a validated model for the simulation of the intracranial circulation and it accounts for the dependence of the hydraulic properties of the jugular veins with respect to the gravity field, which makes it an useful tool for the study of the correlations between extracranial blood redistributions and changes in the intracranial environment. The model is able to simulate the average pressures and flows in different points of the jugular ducts, taking into account the amount of blood coming from the anastomotic connections; simulate how the blood redistribution due to change of posture affects flows and pressures in specific points of the system; and simulate redistributions due to stenotic patterns. Sensitivity analysis to check the robustness of the model was performed. The model reproduces average physiologic behavior of the jugular, vertebral, and cerebral ducts in terms of pressures and flows. In fact, jugular flow drops from ∼11.7 to ∼1.4 ml/s in the passage from supine to standing. At the same time, vertebral flow increases from 0.8 to 3.4 ml/s, while cerebral blood flow, venous sinuses pressure, and intracranial pressure are constant around the average value of 12.5 ml/s, 6 mmHg, and 10 mmHg, respectively. All these values are in agreement with literature data.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3