Multiple coherence of cerebral blood flow velocity in humans

Author:

Panerai Ronney B.,Eames Penelope J.,Potter John F.

Abstract

The coherence function has been used in transfer function analysis of dynamic cerebral autoregulation to assess the statistical significance of spectral estimates of gain and phase frequency response. Interpretation of the coherence function and choice of confidence limits has not taken into account the intrinsic nonlinearity represented by changes in cerebrovascular resistance due to vasomotor activity. For small spontaneous changes in arterial blood pressure (ABP), the relationship between ABP and cerebral blood flow velocity (CBFV) can be linearized, showing that corresponding changes in cerebrovascular resistance should be included as a second input variable. In this case, the standard univariate coherence function needs to be replaced by the multiple coherence, which takes into account the contribution of both inputs to explain CBFV variability. With the use of two different indicators of cerebrovascular resistance index [CVRI = ABP/CBFV and the resistance-area product (RAP)], multiple coherences were calculated for 42 healthy control subjects, aged 20 to 40 yr (28 ± 4.6 yr, mean ± SD), at rest in the supine position. CBFV was measured in both middle cerebral arteries, and ABP was recorded noninvasively by finger photoplethysmography. Results for the ABP + RAP inputs show that the multiple coherence of CBFV for frequencies <0.05 Hz is significantly higher than the corresponding values obtained for univariate coherence ( P < 10−5). Corresponding results for the ABP + CVRI inputs confirm the principle of multiple coherence but are less useful due to the interdependence between CVRI, ABP, and CBFV. The main conclusion is that values of univariate coherence between ABP and CBFV should not be used to reject spectral estimates of gain and phase, derived from small fluctuations in ABP, because the true explained power of CBFV in healthy subjects is much higher than what has been usually predicted by the univariate coherence functions.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3