EP3 receptors mediate PGE2-induced hypothalamic paraventricular nucleus excitation and sympathetic activation

Author:

Zhang Zhi-Hua1,Yu Yang1,Wei Shun-Guang1,Nakamura Yoshiko2,Nakamura Kazuhiro2,Felder Robert B.13

Affiliation:

1. Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa;

2. Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto, Japan; and

3. Medical Service, Department of Veterans Affairs Medical Center, Iowa City, Iowa

Abstract

Prostaglandin E2 (PGE2), an important mediator of the inflammatory response, acts centrally to elicit sympathetic excitation. PGE2 acts on at least four E-class prostanoid (EP) receptors known as EP1, EP2, EP3, and EP4. Since PGE2 production within the brain is ubiquitous, the different functions of PGE2 depend on the expression of these prostanoid receptors in specific brain areas. The type(s) and location(s) of the EP receptors that mediate sympathetic responses to central PGE2 remain unknown. We examined this question using PGE2, the relatively selective EP receptor agonists misoprostol and sulprostone, and the available selective antagonists for EP1, EP3, and EP4. In urethane-anesthetized rats, intracerebroventricular (ICV) administration of PGE2, sulprostone or misoprostol increased renal sympathetic nerve activity, blood pressure, and heart rate. These responses were significantly reduced by ICV pretreatment with the EP3 receptor antagonist; the EP1 and EP4 receptor antagonists had little or no effect. ICV PGE2 or misoprostol increased the discharge of neurons in the hypothalamic paraventricular nucleus (PVN). ICV misoprostol increased the c-Fos immunoreactivity of PVN neurons, an effect that was substantially reduced by the EP3 receptor antagonist. Real-time PCR detected EP3 receptor mRNA in PVN, and immunohistochemical studies revealed sparsely distributed EP3 receptors localized in GABAergic terminals and on a few PVN neurons. Direct bilateral PVN microinjections of PGE2 or sulprostone elicited sympathoexcitatory responses that were significantly reduced by the EP3 receptor antagonist. These data suggest that EP3 receptors mediate the central excitatory effects of PGE2 on PVN neurons and sympathetic discharge.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3