Examination of stimulation mechanism and strength-interval curve in cardiac tissue

Author:

Sidorov Veniamin Y.,Woods Marcella C.,Baudenbacher Petra,Baudenbacher Franz

Abstract

Understanding the basic mechanisms of excitability through the cardiac cycle is critical to both the development of new implantable cardiac stimulators and improvement of the pacing protocol. Although numerous works have examined excitability in different phases of the cardiac cycle, no systematic experimental research has been conducted to elucidate the correlation among the virtual electrode polarization pattern, stimulation mechanism, and excitability under unipolar cathodal and anodal stimulation. We used a high-resolution imaging system to study the spatial and temporal stimulation patterns in 20 Langendorff-perfused rabbit hearts. The potential-sensitive dye di-4-ANEPPS was utilized to record the electrical activity using epifluorescence. We delivered S1-S2 unipolar point stimuli with durations of 2–20 ms. The anodal S-I curves displayed a more complex shape in comparison with the cathodal curves. The descent from refractoriness for anodal stimulation was extremely steep, and a local minimum was clearly observed. The subsequent ascending limb had either a dome-shaped maximum or was flattened, appearing as a plateau. The cathodal S-I curves were smoother, closer to a hyperbolic shape. The transition of the stimulation mechanism from break to make always coincided with the final descending phase of both anodal and cathodal S-I curves. The transition is attributed to the bidomain properties of cardiac tissue. The effective refractory period was longer when negative stimuli were delivered than for positive stimulation. Our spatial and temporal analyses of the stimulation patterns near refractoriness show always an excitation mechanism mediated by damped wave propagation after S2 termination.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3