Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: a model study

Author:

Cornelissen Annemiek J. M.12,Dankelman Jenny1,VanBavel Ed2,Spaan Jos A. E.2

Affiliation:

1. Faculty of Design, Engineering, and Production, Department of Medical Technology and Mechanics, Man Machine Systems and Control Group, Delft University of Technology, 2628 CD Delft; and

2. Department of Medical Physics, Cardiovascular Research Institute Amsterdam, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands

Abstract

Myogenic response, flow-dependent dilation, and direct metabolic control are important mechanisms controlling coronary flow. A model was developed to study how these control mechanisms interact at different locations in the arteriolar tree and to evaluate their contribution to autoregulatory and metabolic flow control. The model consists of 10 resistance compartments in series, each representing parallel vessel units, with their diameters determined by tone depending on either flow and pressure [flow-dependent tone reduction factor (TRFflow) × Tonemyo] or directly on metabolic factors (Tonemeta). The pressure-Tonemyo and flow-TRFflow relations depend on the vessel size obtained from interpolation of data on isolated vessels. Flow-dependent dilation diminishes autoregulatory properties compared with pressure-flow lines obtained from vessels solely influenced by Tonemyo. By applying Tonemeta to the four distal compartments, the autoregulatory properties are restored and tone is equally distributed over the compartments. Also, metabolic control and blockage of nitric oxide are simulated. We conclude that a balance is required between the flow-dependent properties upstream and the constrictive metabolic properties downstream. Myogenic response contributes significantly to flow regulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3