Studying semblances of a true killer: experimental model of human ventricular fibrillation

Author:

Nair K.1,Farid T.1,Masse S.1,Umapathy K.1,Watkins S.1,Poku K.1,Asta J.1,Kusha M.1,Sevaptsidis E.1,Jacob J.1,Floras J. S.1,Nanthakumar K.1

Affiliation:

1. Division of Cardiology, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada

Abstract

It is unknown whether ventricular fibrillation (VF) studied in experimental models represents in vivo human VF. First, we examined closed chest in vivo VF induced at defibrillation threshold testing (DFT) in four patients with ischemic cardiomyopathy pretransplantation. We examined VF in these same four hearts in an ex vivo human Langendorff posttransplantation. VF from DFT was compared with VF from the electrodes from a similar region in the right ventricular endocardium in the Langendorff using two parameters: the scale distribution width (extracted from continuous wavelet transform) and VF mean cycle length (CL). In a second substudy group where multielectrode phase mapping could be performed, we examined early VF intraoperatively (in vivo open chest condition) in three patients with left ventricular cardiomyopathy. We investigated early VF in the hearts of three patients in an ex vivo Langendorff and compared findings with intraoperative VF using two metrics: dominant frequency (DF) assessed by the Welch periodogram and the number of phase singularities (lasting >480 ms). Wavelet analysis ( P = 0.9) and VF CL were similar between the Langendorff and the DFT groups (225 ± 13, 218 ± 24 ms; P = 0.9), indicating that wave characteristics and activation rate of VF was comparable between the two models. Intraoperative DF was slower but comparable with the Langendorff DF over the endocardium (4.6 ± 0.1, 5.0 ± 0.4 Hz; P = 0.9) and the epicardium (4.5 ± 0.2, 5.2 ± 0.4 Hz; P = 0.9). Endocardial phase singularity number (9.6 ± 5, 12.1 ± 1; P = 0.6) was lesser in number but comparable between in vivo and ex vivo VF. VF dynamics in the limited experimental human studies approximates human in vivo VF.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3