Protection afforded by ischemic preconditioning is not mediated by effects on cell-to-cell electrical coupling during myocardial ischemia-reperfusion

Author:

Padilla Ferran1,Garcia-Dorado David1,Rodríguez-Sinovas Antonio1,Ruiz-Meana Marisol1,Inserte Javier1,Soler-Soler Jordi1

Affiliation:

1. Laboratorio de Cardiología Experimental, Servicio de Cardiología, Hospital Vall d'Hebron, 08035 Barcelona, Spain

Abstract

The end-effectors of ischemic preconditioning (IPC) are not well known. It has been recently shown that transgenic mice underexpressing the gap junction protein connexin43 (Cx43) cannot be preconditioned. Because gap junctions allow spreading of cell death during ischemia-reperfusion in different tissues, including myocardium, we hypothesized that the protection afforded by IPC is mediated by effects on gap junction-mediated intercellular communication. To test this hypothesis, we analyzed the effect of IPC (5 min ischemia-5 min reperfusion × 2) on the changes in electrical impedance (four electrode probe) and impulse propagation velocity (transmembrane action potential) induced by ischemia (60 min) and reperfusion (60 min) in isolated rat hearts. IPC ( n = 8) reduced reperfusion-induced lactate dehydrogenase release by 65.8% with respect to control hearts ( n = 9) ( P = 0.04) but had no effect on the time of onset of rigor contracture (increase in diastolic tension), electrical uncoupling (sharp changes in tissue resistivity and phase angle in impedance recordings), or block of impulse propagation during ischemia. Normalization of electrical impedance during reperfusion was also unaffected by IPC. The lack of effect of IPC on ischemic rigor contracture and on changes in tissue impedance during ischemia-reperfusion were validated under in vivo conditions in pigs submitted to 48 min of coronary occlusion and 120 min of reperfusion. IPC ( n = 12) reduced infarct size (triphenyltetrazolium) by 64.9% ( P = 0.01) with respect to controls ( n = 17). We conclude that the protection afforded by IPC is not mediated by effects on electrical coupling. This result is consistent with recent findings suggesting that Cx43 could have effects on cell survival independent on changes in cell-to-cell communication.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3