Affiliation:
1. Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
Abstract
Rabbit aortic endothelium metabolizes arachidonic acid (AA) by the 15-lipoxygenase pathway to vasodilatory eicosanoids, hydroxyepoxyeicosatrienoic acids (HEETAs), and trihydroxyeicosatrienoic acids (THETAs). The present study determined the chemical identity of the vasoactive THETA and investigated its role in ACh-induced relaxation in the rabbit aorta. AA caused endothelium-dependent, concentration-related relaxations of the rabbit aorta. Increasing the extracellular KCl concentration from 4.8 to 20 mM inhibited the relaxations to AA by ∼60%, thereby implicating K+-channel activation in the relaxations. In addition, AA caused an endothelium-dependent hyperpolarization of aortic smooth muscle from –39.6 ± 2.7 to –56.1 ± 3.4 mV. In rabbit aortic rings, [14C]AA was metabolized to prostaglandins, HEETAs, THETAs, and 15-hydroxyeicosatetraenoic acid. Additional purification of the THETAs by HPLC resolved the mixture into its 14C-labeled products. Gas chromatography/mass spectrometry identified the metabolites as isomers of 11,12,15-THETA and 11,14,15-THETA. The 11,12,15-THETA relaxed and hyperpolarized the rabbit aorta, whereas 11,14,15-THETA had no vasoactive effect. The relaxations to 11,12,15-THETA were blocked by 20 mM KCl. In aortic rings pretreated with inhibitors of nitric oxide and prostaglandin synthesis, ACh caused a concentration-related relaxation that was completely blocked by 20 mM KCl. Pretreatment with the phospholipase A2 inhibitors mepacrine and 7,7-dimethyl-5,8-eicosadienoic acid, the lipoxygenase inhibitors cinnamyl-3,4-dihydroxy-α-cyanocinnamate, nordihydroguaiaretic acid, and ebselen, or the hydroperoxide isomerase inhibitors miconazole and clotrimazole also blocked ACh-induced relaxations. ACh caused a threefold increase in THETA release. These studies indicate that AA is metabolized by endothelial cells to 11,12,15-THETA, which activates K+ channels to hyperpolarize the aortic smooth muscle membrane and induce relaxation. Additionally, this lipoxygenase pathway mediates the nonnitric oxide, nonprostaglandin relaxations to ACh in the rabbit aorta by acting as a source of an endothelium-derived hyperpolarizing factor.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology