Perfusion territories subtended by penetrating coronary arteries increase in size and decrease in number toward the subendocardium

Author:

van Horssen P.1,van den Wijngaard J. P. H. M.1,Brandt M. J.1,Hoefer I. E.2,Spaan J. A. E.1,Siebes M.1

Affiliation:

1. Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and

2. Department of Experimental Cardiology, Utrecht Medical Center, Utrecht, The Netherlands

Abstract

Blood flow distribution within the myocardium and the location and extent of areas at risk in case of coronary artery disease are dependent on the distribution and morphology of intramural vascular crowns. Knowledge of the intramural vasculature is essential in novel multiscale and multiphysics modeling of the heart. For this study, eight canine hearts were analyzed with an imaging cryomicrotome, developed to acquire high-resolution spatial data on three-dimensional vascular structures. The obtained vasculature was skeletonized, and for each penetrating artery starting from the epicardium, the dependent vascular crown was defined. Three-dimensional Voronoi tessellation was applied with the end points of the terminal segments as center points. The centroid of end points in each branch allowed classification of the corresponding perfusion territories in subendocardial, midmyocardial, and subepicardial. Subendocardial regions have relatively few territories of about 0.5 ml in volume having their own penetrating artery at the epicardium, whereas the subepicardium is perfused by a multitude of small perfusion territories, in the order of 0.01 ml. Vascular volume density of small arteries up till 400 μm was 3.2% at the subendocardium territories but only 0.8% in the subepicardium territories. Their higher volume density corresponds to compensation for flow impeding forces by cardiac contraction. These density differences result in different scaling law properties of vascular volume and tissue mass per territory type. This novel three-dimensional quantitative analysis may form the basis for patient-specific computational models on coronary perfusion and aid the interpretation of image-based clinical methods for assessing the transmural perfusion distribution.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3