Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species

Author:

O'Hara Thomas1,Rudy Yoram1

Affiliation:

1. Cardiac Bioelectricity and Arrhythmia Center, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri

Abstract

Explanations for arrhythmia mechanisms at the cellular level are usually based on experiments in nonhuman myocytes. However, subtle electrophysiological differences between species may lead to different rhythmic or arrhythmic cellular behaviors and drug response given the nonlinear and highly interactive cellular system. Using detailed and quantitatively accurate mathematical models for human, dog, and guinea pig ventricular action potentials (APs), we simulated and compared cell electrophysiology mechanisms and response to drugs. Under basal conditions (absence of β-adrenergic stimulation), Na+/K+-ATPase changes secondary to Na+ accumulation determined AP rate dependence for human and dog but not for guinea pig where slow delayed rectifier current ( IKs) was the major rate-dependent current. AP prolongation with reduction of rapid delayed rectifier current ( IKr) and IKs (due to mutations or drugs) showed strong species dependence in simulations, as in experiments. For humans, AP prolongation was 80% following IKr block. It was 30% for dog and 20% for guinea pig. Under basal conditions, IKs block was of no consequence for human and dog, but for guinea pig, AP prolongation after IKs block was severe. However, with β-adrenergic stimulation, IKs played an important role in all species, particularly in AP shortening at fast rate. Quantitative comparison of AP repolarization, rate-dependence mechanisms, and drug response in human, dog, and guinea pig revealed major species differences (e.g., susceptibility to arrhythmogenic early afterdepolarizations). Extrapolation from animal to human electrophysiology and drug response requires great caution.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3