Evolution of a “falx lunatica” in demarcation of critically ischemic myocutaneous tissue

Author:

Harder Yves,Amon Michaela,Georgi Mirko,Banic Andrej,Erni Dominique,Menger Michael D.

Abstract

Using intravital microscopy in a chronic in vivo mouse model, we studied the demarcation of myocutaneous flaps and evaluated microvascular determinants for tissue survival and necrosis. Chronic ischemia resulted in a transition zone, characterized by a red fringe and a distally adjacent white falx, which defined the demarcation by dividing the proximally normal from the distally necrotic tissue. Tissue survival in the red zone was determined by hyperemia, as indicated by recovery of the transiently reduced functional capillary density, and capillary remodeling, including dilation, hyperperfusion, and increased tortuosity. Angiogenesis and neovascularization were not observed over the 10-day observation period. The white rim distal to the red zone, appearing as “falx lunatica,” showed a progressive decrease of functional capillary density similar to that of the necrotic distal area but without desiccation, and thus transparency, of the tissue. Development of the distinct zones of the critically ischemic tissue could be predicted by partial tissue oxygen tension (Pt[Formula: see text]) analysis by the time of flap elevation. The falx lunatica evolved at a Pt[Formula: see text] between 6.2 ± 1.3 and 3.8 ± 0.7 mmHg, whereas tissue necrosis developed at <3.8 ± 0.7 mmHg. Histological analysis within the falx lunatica revealed interstitial edema formation and muscle fiber nuclear rarefaction but an absence of necrosis. We have thus demonstrated that ischemia-induced necrosis does not demarcate sharply from normal tissue but develops beside a fringe of tissue with capillary remodeling an adjacent falx lunatica that survives despite nutritive capillary perfusion failure, probably by direct oxygen diffusion.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3