Plasma protein concentration and control of coronary vascular resistance in isolated rat heart

Author:

Avolio A. P.,Spaan J. A.,Laird J. D.

Abstract

Isolated externally paced (300 beats/min) rat hearts were perfused at constant pressure (70 mmHg) using a modified Krebs-Henseleit solution with (n = 52) and without (n = 15) washed bovine red cells. Albumin concentration varied from 1 to 10 g/dl. With increasing albumin concentration in blood-perfused hearts, wet-to-dry weight ratio, peak reactive hyperemic flow, and control geometric resistance were decreased, whereas oxygen consumption, control flow, and minimal geometric resistance remained constant. For plasma-perfused hearts, there was a decrease in both control and peak flow, and the other results were similar to the blood-perfused hearts. These results indicate the following. 1) Increase in interstitial fluid volume is not sufficient to cause a significant increase in minimal vascular resistance. 2) Increase in blood viscosity is compensated by vasodilation maintaining steady flow constant. 3) Minimal vascular resistance is determined by physical geometry of the vascular bed. 4) Regulation of coronary flow is postulated to be achieved by smooth muscle response to interstitial osmolarity, with a negative feedback signal coming from variation of capillary arterial pressure to variations in flow.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vasorelaxation Effect and Mechanism of Action of Vascular Endothelial Growth Factor-165 in Isolated Perfused Human Skin Flaps;Journal of Surgical Research;2012-01

2. Transient transcapillary exchange of water driven by osmotic forces in the heart;American Journal of Physiology-Heart and Circulatory Physiology;2003-09

3. Effect of nicotine on vasoconstrictor and vasodilator responses in human skin vasculature;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2001-10-01

4. Calcium Waves;Circulation Research;2000-05-26

5. oxLDL specifically impairs endothelium-dependent, NO-mediated dilation of coronary arterioles;American Journal of Physiology-Heart and Circulatory Physiology;2000-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3