Improved phonocardiogram system based on acoustic impedance matching

Author:

Schwartz R. S.,Reeves J. T.,Sodal I. E.,Barnes F. S.

Abstract

We considered that phonocardiographic recording could be improved 1) by minimizing the acoustic impedance mismatch between the precordial tissue and transducer, 2) by optimizing the configuration of the impedance-matching medium and transducer design, and 3) by storing signals in digital form through analog-to-digital conversion of analog recordings made at the bedside. The use of an aqueous coupling medium to improve energy transmission increased signal voltage approximately 100-fold over presently used commercial devices. Further match to the crystal was achieved by a concentrating horn configuration for the aqueous medium. Measured frequency response of the device in the range 1 Hz to 1 kHz was better than two other commercially tested microphones. Inspection of comparative phonocardiograms showed more information from the new device than from the two other commercial devices. Unfiltered digitized signals, using our microphone in normal subjects, demonstrated good beat-to-beat repeatability, but analog filtering to obtain the conventional phonocardiogram showed significant loss of information. The new instrument appears to be superior to those commercial devices tested in recording heart sounds.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3