Transmural heterogeneity of calcium activity and mechanical function in the canine left ventricle

Author:

Cordeiro Jonathan M.1,Greene Lindsey1,Heilmann Cory1,Antzelevitch Daniel1,Antzelevitch Charles1

Affiliation:

1. Masonic Medical Research Laboratory, Utica, New York 13501-1787

Abstract

Although electrical heterogeneity within the ventricular myocardium has been the focus of numerous studies, little attention has been directed to the mechanical correlates. This study examines unloaded cell shortening, Ca2+ transients, and inward L-type Ca2+ current ( ICa,L) characteristics of epicardial, endocardial, and midmyocardial cells isolated from the canine left ventricle. Unloaded cell shortening was recorded using a video edge detector, Ca2+ transients were measured in cells loaded with 15 μM fluo-3 AM and voltage and current-clamp recordings were obtained using patch-clamp techniques. Time to peak and latency to onset of contraction were shortest in epicardial and longest in endocardial cells; midmyocardial cells displayed an intermediate time to peak. When contraction was elicited using uniform voltage-clamp square waves, epicardial versus endocardial distinctions persisted and midmyocardial cells displayed a time to peak comparable to that of epicardium. The current-voltage relationship for ICa,L and fluorescence-voltage relationship were similar in the three cell types when quantitated using square pulses. However, peak ICa,L and total charge were significantly larger when an epicardial versus endocardial action potential waveform was used to elicit the current under voltage-clamp conditions. Sarcoplasmic reticulum Ca2+ content, assessed by rapid application of caffeine, was largest in epicardial cells and contributed to a faster time to peak. Our data point to important differences in calcium homeostasis and mechanical function among the three ventricular cell types. These differences serve to synchronize contraction across the ventricular wall. Although these distinctions are conferred in part by differences in electrical characteristics of the three cell types, intrinsic differences in excitation-contraction coupling are evident.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3