Effects of mechanical uncouplers, diacetyl monoxime, and cytochalasin-D on the electrophysiology of perfused mouse hearts

Author:

Baker Linda C.,Wolk Robert,Choi Bum-Rak,Watkins Simon,Plan Patricia,Shah Anisha,Salama Guy

Abstract

Chemical uncouplers diacetyl monoxime (DAM) and cytochalasin D (cyto-D) are used to abolish cardiac contractions in optical studies, yet alter intracellular Ca2+ concentration ([Ca2+]i) handling and vulnerability to arrhythmias in a species-dependent manner. The effects of uncouplers were investigated in perfused mouse hearts labeled with rhod-2/AM or 4-[β-[2-(di- n-butylamino)-6-naphthyl]vinyl]pyridinium (di-4-ANEPPS) to map [Ca2+]i transients (emission wavelength = 585 ± 20 nm) and action potentials (APs) (emission wavelength > 610 nm; excitation wavelength = 530 ± 20 nm). Confocal images showed that rhod-2 is primarily in the cytosol. DAM (15 mM) and cyto-D (5 μM) increased AP durations (APD75 = 20.0 ± 3 to 46.6 ± 5 ms and 39.9 ± 8 ms, respectively, n = 4) and refractory periods (45.14 ± 12.1 to 82.5 ± 3.5 ms and 78 ± 4.24 ms, respectively). Cyto-D reduced conduction velocity by 20% within 5 min and DAM by 10% gradually in 1 h ( n = 5 each). Uncouplers did not alter the direction and gradient of repolarization, which progressed from apex to base in 15 ± 3 ms. Peak systolic [Ca2+]i increased with cyto-D from 743 ± 47 ( n = 8) to 944 ± 17 nM ( n = 3, P = 0.01) but decreased with DAM to 398 ± 44 nM ( n = 3, P < 0.01). Diastolic [Ca2+]i was higher with cyto-D (544 ± 80 nM, n = 3) and lower with DAM (224 ± 31, n = 3) compared with controls (257 ± 30 nM, n = 3). DAM prolonged [Ca2+]i transients at 75% recovery (54.3 ± 5 to 83.6 ± 1.9 ms), whereas cyto-D had no effect (58.6 ± 1.2 ms; n = 3). Burst pacing routinely elicited long-lasting ventricular tachycardia but not fibrillation. Uncouplers flattened the slope of AP restitution kinetic curves and blocked ventricular tachycardia induced by burst pacing.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3