Action potential duration restitution and ventricular fibrillation due to rapid focal excitation

Author:

Swissa Moshe1,Qu Zhilin2,Ohara Toshihiko1,Lee Moon-Hyoung1,Lin Shien-Fong3,Garfinkel Alan2,Karagueuzian Hrayr S.1,Weiss James N.2,Chen Peng-Sheng1

Affiliation:

1. Division of Cardiology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles 90048;

2. Division of Cardiology, Departments of Medicine and Physiology and Physiological Science, University of California at Los Angeles School of Medicine, Los Angeles, California 90095; and

3. Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235

Abstract

The focal source hypothesis of ventricular fibrillation (VF) posits that rapid activation from a focal source, rather than action potential duration (APD) restitution properties, is responsible for the maintenance of VF. We injected aconitine (100 μg) into normal isolated perfused swine right ventricles (RVs) stained with 4-{β-[2-(di- n-butylamino)-6-naphthyl]vinyl}pyridinium (di-4-ANEPPS) for optical mapping studies. Within 97 ± 163 s, aconitine induced ventricular tachycardia (VT) with a mean cycle length 268 ± 37 ms, which accelerated before converting to VF. Drugs that flatten the APD restitution slope, including diacetyl monoxime (10–20 mM, n = 6), bretylium (10–20 μg/ml, n = 3), and verapamil (2–4 μg/ml, n = 3), reversibly converted VF to VT in all cases. In two RVs, VF persisted despite of the excision of the aconitine site. Simulations in two-dimensional cardiac tissue showed that once VF was initiated, it remained sustained even after the “aconitine” site was eliminated. In this model of focal source VF, the VT-to-VF transition occurred due to a wave break outside the aconitine site, and drugs that flattened the APD restitution slope converted VF to VT despite continuous activation from aconitine site.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3