Affiliation:
1. Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
Abstract
Corresponding to the synchronized contraction of the myocardium and rhythmic pumping function of the heart, a single form of cardiac troponin T (cTnT) is present in the adult cardiac muscle of humans and most other vertebrate species. Alternative splicing variants of cTnT are found in failing human hearts and animal dilated cardiomyopathies. Biochemical analyses have shown that these cTnT variants are functional and produce shifted myofilament Ca2+sensitivity. We proposed a hypothesis that the coexistence of two or more functionally distinct TnT variants in the adult ventricular muscle that is normally activated as a syncytium may decrease heart function and cause cardiomyopathy (Huang et al., Am J Physiol Cell Physiol 294: C213–C222, 2008). In the present study, we studied transgenic mouse hearts expressing one or two cTnT variants in addition to normal adult cTnT to investigate whether desynchronized myofilament activation decreases ventricular efficiency. The function of ex vivo working hearts was examined in the absence of systemic neurohumoral influence. The results showed that the transgenic mouse hearts produced lower maximum left ventricular pressure, slower contractile and relaxation velocities, and decreased stroke volume compared with wild-type controls. Ventricular pumping efficiency, calculated by the ejection integral versus total systolic integral and cardiac work versus oxygen consumption, was significantly lower in transgenic mouse hearts and corresponded to the number of cTnT variants present. The results indicated a pathogenic mechanism in which the coexistence of functionally different cTnT variants in cardiac muscle reduces myocardial efficiency due to desynchronized thin filament activation.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献