Cardiac myocyte-specific overexpression of human GTP cyclohydrolase I protects against acute cardiac allograft rejection

Author:

Ionova Irina A.1,Vásquez-Vivar Jeannette234,Cooley Brian C.5,Khanna Ashwani K.6,Whitsett Jennifer2,Herrnreiter Anja2,Migrino Raymond Q.78,Ge Zhi-Dong9,Regner Kevin R.10,Channon Keith M.11,Alp Nicholas J.11,Pieper Galen M.1312

Affiliation:

1. Department of Surgery (Division of Transplant Surgery),

2. Department of Biophysics,

3. Free Radical Research Center,

4. Redox Biology Program,

5. Orthopaedic Surgery,

6. Division of Cardiology, University of Maryland School of Medicine, Baltimore, Maryland;

7. Cardiovascular Medicine,

8. Phoenix Veterans Affairs Healthcare System, Phoenix, Arizona; and

9. Anesthesiology,

10. Medicine (Division of Nephrology), and

11. Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford United Kingdom

12. Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin;

Abstract

GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) synthesis. Decreases in GTPCH activity and expression have been shown in late stages of acute cardiac rejection, suggesting a deficit in BH4. We hypothesized that increasing intracellular levels of BH4 by cardiac myocyte-targeted overexpression of GTPCH would diminish acute cardiac allograft rejection. Transgenic mice overexpressing GTPCH in the heart were generated and crossed on C57BL6 background. Wild-type and transgenic mouse donor hearts were transplanted into BALB/c recipient mice. Left ventricular (LV) function, histological rejection, BH4 levels, and inflammatory cytokine gene expression (mRNA) were examined. Expression of human GTPCH was documented by PCR, Western analysis, and function by a significant ( P < 0.001) increase in cardiac BH4 levels. GTPCH transgene decreased histological rejection (46%; P < 0.003) and cardiac myocyte injury (eosin autofluorescence; 56%; P < 0.0001) independent of changes in inflammatory cytokine expression or nitric oxide content. GTPCH transgene decreased IL-2 (88%; P < 0.002), IL-1R2 (42%; P < 0.0001), and programmed cell death-1 (67%; P < 0.0001) expression, whereas it increased fms-like tyrosine kinase 3 (156%; P < 0.0001) and stromal-derived factor-1 (2; 190%; P < 0.0001) expression. There was no difference in ejection fraction or fractional shortening; however, LV mass was significantly increased ( P < 0.05) only in wild-type grafts. The decreases in LV mass, cardiac injury, and histological rejection support a protective role of cardiac GTPCH overexpression and increased BH4 synthesis in cardiac allografts. The mechanism of the decreased rejection appears related to decreased T cell proliferation and modulation of immune function by higher expression of genes involved in hematopoietic/stromal cell development and recruitment.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3