Inhibition of G protein-coupled receptor trafficking in neuroblastoma cells by MAP 4 decoration of microtubules

Author:

Cheng Guangmao1,Iijima Yoshihiro1,Ishibashi Yuji1,Kuppuswamy Dhandapani1,Cooper George1

Affiliation:

1. Cardiology Division, Gazes Cardiac Research Institute, Medical University of South Carolina, and Department of Veterans Affairs Medical Center, Charleston, South Carolina 29401

Abstract

One mechanism for the reappearance of G protein-coupled receptors after agonist activation is microtubule-based transport. In pressure-overload cardiac hypertrophy, there is downregulation of G protein-coupled receptors and the appearance of a densified microtubule network extensively decorated by a microtubule-associated protein, MAP 4. Our hypothesis is that overdecoration of a dense microtubule network with this structural protein, as in hypertrophied myocardium, would impede receptor recovery. We tested this hypothesis by studying muscarinic acetylcholine receptor (mAChR) internalization and recovery after agonist stimulation in neuroblastoma cells. Exposure of cells to carbachol, a muscarinic receptor agonist, decreased membrane receptor binding activity. After carbachol withdrawal, receptor binding recovered toward the initial value. When microtubules were depolymerized before carbachol withdrawal, mAChR recovery was only 44% of that in intact cells. Cells were then infected with an adenovirus containing MAP 4 cDNA. MAP 4 protein decorated the microtubules extensively, and receptor recovery upon carbachol withdrawal was reduced to 54% of control. Thus muscarinic receptor recovery after agonist exposure is microtubule dependent, and MAP 4 decoration of microtubules inhibits receptor recovery.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3