Author:
d'Agostino Chiara,Labinskyy Volodymyr,Lionetti Vincenzo,Chandler Margaret P.,Lei Biao,Matsuo Ken,Bellomo Michelle,Xu Xiaobin,Hintze Thomas H.,Stanley William C.,Recchia Fabio A.
Abstract
Acute inhibition of nitric oxide (NO) synthase causes a reversible alteration in myocardial substrate metabolism. We tested the hypothesis that prolonged NO synthase inhibition alters cardiac metabolic phenotype. Seven chronically instrumented dogs were treated with Nω-nitro-l-arginine methyl ester (l-NAME, 35 mg·kg−1·day−1po) for 10 days to inhibit NO synthesis, and seven were used as controls. Cardiac free fatty acid, glucose, and lactate oxidation were measured by infusion of [3H]oleate, [14C]glucose, and [13C]lactate, respectively. After 10 days of l-NAME administration, despite no differences in left ventricular afterload, cardiac O2consumption was significantly increased by 30%, consistent with a marked enhancement in baseline oxidation of glucose (6.9 ± 2.0 vs. 1.7 ± 0.5 μmol·min−1·100 g−1, P < 0.05 vs. control) and lactate (21.6 ± 5.6 vs. 11.8 ± 2.6 μmol·min−1·100 g−1, P < 0.05 vs. control). When left ventricular afterload was increased by ANG II infusion to stimulate myocardial metabolism, glucose oxidation was augmented further in the l-NAME than in the control group, whereas free fatty acid oxidation decreased. Exogenous NO (diethylamine nonoate, 0.01 μmol·kg−1·min−1iv) could not reverse this metabolic alteration. Consistent with the accelerated rate of carbohydrate oxidation, total myocardial pyruvate dehydrogenase activity and protein expression were higher (38 and 34%, respectively) in the l-NAME than in the control group. Also, protein expression of the constitutively active glucose transporter GLUT-1 was significantly elevated (46%) vs. control. We conclude that prolonged NO deficiency causes a profound alteration in cardiac metabolic phenotype, characterized by selective potentiation of carbohydrate oxidation, that cannot be reversed by a short-term infusion of exogenous NO. This phenomenon may constitute an adaptive mechanism to counterbalance cardiac mechanical inefficiency.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献