Selenium prevents diabetes-induced alterations in [Zn2+]iand metallothionein level of rat heart via restoration of cell redox cycle

Author:

Ayaz Murat,Turan Belma

Abstract

Intracellular free zinc concentration ([Zn2+]i) is very important for cell functions, and its excessive accumulation is cytotoxic. [Zn2+]ican increase rapidly in cardiomyocytes because of mobilization of Zn2+from intracellular stores by reactive oxygen species (ROS). Moreover, ROS have been proposed to contribute to direct and/or indirect damage to cardiomyocytes in diabetes. To address these hypotheses, we investigated how elevated [Zn2+]iin cardiomyocytes could contribute to diabetes-induced alterations in intracellular free calcium concentration ([Ca2+]i). We also investigated its relationship to the changes of metallothionein (MT) level of the heart. Cardiomyocytes from normal rats loaded with fura-2 were used to fluorometrically measure resting [Zn2+]i(0.52 ± 0.06 nM) and [Ca2+]i(26.53 ± 3.67 nM). Fluorescence quenching by the heavy metal chelator N, N, N′, N′-tetrakis(2-pyridylmethyl)ethylenediamine was used to quantify [Zn2+]i. Our data showed that diabetic cardiomyocytes exhibited significantly increased [Zn2+]i(0.87 ± 0.05 nM ) and [Ca2+]i(49.66 ± 9.03 nM), decreased levels of MT and reduced glutathione, increased levels of lipid peroxidation and nitric oxide products, and decreased activities of superoxide dismutase, glutathione reductase, and glutathione peroxidase. Treatment (4 wk) of diabetic rats with sodium selenite (5 μmol·kg body wt−1·day−1) prevented these defects induced by diabetes. A comparison of present data with previously observed beneficial effects of selenium treatment on diabetes-induced contractile dysfunction of the heart can suggest that an increase in [Zn2+]imay contribute to oxidant-induced alterations of excitation-contraction coupling in diabetes. In addition, we showed that oxidative stress is involved in the etiology of diabetes-induced downregulation of heart function via depressed endogenous antioxidant defense mechanisms.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3