Intraventricular and interventricular cellular heterogeneity of inotropic responses to α1-adrenergic stimulation

Author:

Chu Charles1,Thai Kevin1,Park Ki Wan1,Wang Paul1,Makwana Om1,Lovett David H.1,Simpson Paul C.1,Baker Anthony J.1

Affiliation:

1. Veterans Affairs Medical Center, San Francisco, California; and Department of Medicine, University of California, San Francisco, California

Abstract

α1-Adrenergic receptors (α1-ARs) elicit a negative inotropic effect (NIE) in the mouse right ventricular (RV) myocardium but a positive inotropic effect (PIE) in the left ventricular (LV) myocardium. Effects on myofilament Ca2+sensitivity play a role, but effects on Ca2+handling could also contribute. We monitored the effects of α1-AR stimulation on contraction and Ca2+transients using single myocytes isolated from the RV or LV. Interestingly, for both the RV and LV, we found heterogeneous myocyte inotropic responses. α1-ARs mediated either a PIE or NIE, although RV myocytes had a greater proportion of cells manifesting a NIE (68%) compared with LV myocytes (36%). Stimulation of a single α1-AR subtype (α1A-ARs) with a subtype-selective agonist also elicited heterogeneous inotropic responses, suggesting that the heterogeneity arose from events downstream of the α1A-AR subtype. For RV and LV myocytes, an α1-AR-mediated PIE was associated with an increased Ca2+transient and a NIE was associated with a decreased Ca2+transient, suggesting a key role for Ca2+handling. For RV and LV myocytes, α1-AR-mediated decreases in the Ca2+transient were associated with increased Ca2+export from the cell and decreased Ca2+content of the sarcoplasmic reticulum. In contrast, for myocytes with α1-AR-induced increased Ca2+transients, sarcoplasmic reticulum Ca2+content was not increased, suggesting that other mechanisms contributed to the increased Ca2+transients. This study demonstrates the marked heterogeneity of LV and RV cellular inotropic responses to stimulation of α1-ARs and reveals a new aspect of biological heterogeneity among myocytes in the regulation of contraction.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3