A constitutive modeling interpretation of the relationship among carotid artery stiffness, blood pressure, and age in hypertensive subjects

Author:

Spronck Bart1ORCID,Heusinkveld Maarten H. G.12,Donders Wouter P.23,de Lepper Anouk G. W.1,Op't Roodt Jos4,Kroon Abraham A.4,Delhaas Tammo1,Reesink Koen D.1

Affiliation:

1. Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands;

2. Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands;

3. Department of Biomedical Engineering, MHeNS School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; and

4. Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands

Abstract

Aging has a profound influence on arterial wall structure and function. We have previously reported the relationship among pulse wave velocity, age, and blood pressure in hypertensive subjects. In the present study, we aimed for a quantitative interpretation of the observed changes in wall behavior with age using a constitutive modeling approach. We implemented a model of arterial wall biomechanics and fitted this to the group-averaged pressure-area ( P-A) relationship of the “young” subgroup of our study population. Using this model as our take-off point, we assessed which parameters had to be changed to let the model describe the “old” subgroup’s P-A relationship. We allowed elastin stiffness and collagen recruitment parameters to vary and adjusted residual stress parameters according to published age-related changes. We required wall stress to be homogeneously distributed over the arterial wall and assumed wall stress normalization with age by keeping average “old” wall stress at the “young” level. Additionally, we required axial force to remain constant over the cardiac cycle. Our simulations showed an age-related shift in pressure-load bearing from elastin to collagen, caused by a decrease in elastin stiffness and a considerable increase in collagen recruitment. Correspondingly, simulated diameter and wall thickness increased by about 20 and 17%, respectively. The latter compared well with a measured thickness increase of 21%. We conclude that the physiologically realistic changes in constitutive properties we found under physiological constraints with respect to wall stress could well explain the influence of aging in the stiffness-pressure-age pattern observed.

Funder

Maastricht University: Kootstra talent fellowship

Dutch Organization for Scientific Research (NWO)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3