Differences in genetic signaling, and not mechanical properties of the wall, are linked to ascending aortic aneurysms in fibulin-4 knockout mice

Author:

Kim Jungsil1,Procknow Jesse D.1,Yanagisawa Hiromi23,Wagenseil Jessica E.1

Affiliation:

1. Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri;

2. Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas; and

3. Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan

Abstract

Fibulin-4 is an extracellular matrix protein that is essential for proper assembly of arterial elastic fibers. Mutations in fibulin-4 cause cutis laxa with thoracic aortic aneurysms (TAAs). Sixty percent of TAAs occur in the ascending aorta (AA). Newborn mice lacking fibulin-4 ( Fbln4−/−) have aneurysms in the AA, but narrowing in the descending aorta (DA), and are a unique model to investigate locational differences in aneurysm susceptibility. We measured mechanical behavior and gene expression of AA and DA segments in newborn Fbln4−/− and Fbln4+/+ mice. Fbln4−/− AA has increased diameters compared with Fbln4+/+ AA and Fbln4−/− DA at most applied pressures, confirming genotypic and locational specificity of the aneurysm phenotype. When diameter compliance and tangent modulus were calculated from the mechanical data, we found few significant differences between genotypes, suggesting that the mechanical response to incremental diameter changes is similar, despite the fragmented elastic fibers in Fbln4−/− aortas. Fbln4−/− aortas showed a trend toward increased circumferential stretch, which may be transmitted to smooth muscle cells (SMCs) in the wall. Gene expression data suggest activation of pathways for SMC proliferation and inflammation in Fbln4−/− aortas compared with Fbln4+/+. Additional genes in both pathways, as well as matrix metalloprotease-8 ( Mmp8), are upregulated specifically in Fbln4−/− AA compared with Fbln4+/+ AA and Fbln4−/− DA. Mmp8 is a neutrophil collagenase that targets type 1 collagen, and upregulation may be necessary to allow diameter expansion in Fbln4−/− AA. Our results provide molecular and mechanical targets for further investigation in aneurysm pathogenesis.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3