Heterogeneous gap junction remodeling stabilizes reentrant circuits in the epicardial border zone of the healing canine infarct: a computational study

Author:

Cabo Candido,Boyden Penelope A.

Abstract

The ventricular tachycardias (VTs) that originate in the 5-day epicardial border zone (EBZ) of the healing canine infarcted heart are due to reentrant excitation. In cells surviving in the EBZ, both sarcolemmal ionic channels and gap junction conductance and distribution are remodeled. We previously showed that the heterogeneities in sodium current ( INa) and L-type calcium channel current ( ICaL) of the center and outer pathway cells result in a homogenization of the refractory period that in turn stabilizes reentrant VTs for ∼10 beats. To understand how heterogeneities in transverse gap junctional conductance remodeling reported experimentally contribute to the stability of these tachycardias, we studied the dynamics of reentering waves in two-dimensional computer models of the EBZ. First we used a computer model with homogeneous ionic channel properties [infarcted border zone cell model (IZ)]. These simulations show that, in the absence of heterogeneities in ionic channel properties, reentrant waves tend to drift to localized regions of uncoupling and stabilize there. Second, we used a computer model with a more realistic representation of the heterogeneous EBZ, including cellular models for both the center (IZc) and outer (IZo) pathway cells. These simulations show that neither a region of uniform uncoupling nor a step transition between two regions with different side-to-side (transverse) cell coupling stabilizes reentry in this substrate. However, an area of localized uncoupling did stabilize reentry in such a model. We propose that in addition to the heterogeneities in INa and ICaL properties, heterogeneities in gap junctional conductance in the EBZ causing regions of localized uncoupling stabilize VT in the EBZ. Previous experimental in situ activation maps of the 5-day EBZ show that the lines of block form in regions of slow transverse propagation. This is consistent with our findings that areas of localized uncoupling stabilize reentry.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3