Visible-light photon migration through myocardium in vivo

Author:

Gandjbakhche Amir H.1,Bonner Robert F.1,Arai Andrew E.2,Balaban Robert S.2

Affiliation:

1. Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development, and

2. Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892

Abstract

Empirical data between 510 and 590 nm of diffuse reflected light from the pig heart in vivo have shown that myoglobin and cytochrome c absorption peaks with little apparent contribution of red blood cell (RBC) Hb. Monte Carlo simulations of photon migration in tissue were performed to compare the effects of myoglobin and cytochromes with those of blood Hb on photon pathlengths and diffuse reflectance of visible wavelengths (450–600 nm) from the pig heart in vivo. Wavelength dependence of the input parameters, including the transport-corrected scattering coefficients (1.1–1.2 mm−1) and the absorption coefficients of blood-free solubilized heart tissue (0.43–1.47 mm−1), as well as the absorption coefficients of Hb, were determined by an integrating sphere method and standard spectrophotometry, respectively. The Monte Carlo simulations indicate that in the 510- to 590-nm range the mean path length within the myocardium for diffusely reflected light varies from 1.4 to 1.2 mm, whereas their mean penetration depth within the epicardium is only 330–400 μm for blood-free heart tissue. Analysis shows that the blood Hb absorption extrema are only observable between 510 and 590 nm when RBC concentration in tissue is >0.5%. Blood within vessels much larger than capillaries does not contribute significantly to the spectral features, because virtually all light in this spectral range is absorbed during transit through large vessels (>100 μm). This analysis suggests that diffuse reflected light in the 510- to 590-nm region will show spectral features uniquely associated with myoglobin and cytochrome c oxygenation states within 400 μm of the surface of the heart in situ as long as the capillary RBC concentration remains <0.5%.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3