Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice

Author:

Lefer David J.1,Jones Steven P.1,Girod Wesley G.1,Baines Amarpreet2,Grisham Matthew B.1,Cockrell Adam S.1,Huang Paul L.3,Scalia Rosario2

Affiliation:

1. Department of Molecular and Cellular Physiology, Louisiana State University Medical Center, Shreveport, Louisiana 71130;

2. Department of Physiology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

3. Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129; and

Abstract

Nitric oxide (NO) is known to be an important endogenous modulator of leukocyte-endothelial cell interactions within the microcirculation. We examined leukocyte rolling and adhesion under baseline conditions and following thrombin (0.25 U/ml) superfusion in the mesentery of wild-type, inducible NOS (iNOS)-deficient (−/−), neuronal NOS (nNOS) −/−, and endothelial cell NOS (ecNOS) −/− mice to further our understanding of NO and leukocyte function. Baseline leukocyte rolling (cells/min) was significantly elevated in both the nNOS −/− (30.0 ± 4.0) and ecNOS −/− mice (67.0 ± 12.0) compared with wild-type mice (11.0 ± 1.4). In addition, baseline leukocyte adherence (cells/100 μm of vessel) was also significantly elevated in the nNOS −/− (5.2 ± 1.0) and ecNOS −/− (13.0 ± 1.3) compared with wild-type animals (1.3 ± 0.5). Deficiency of iNOS had no effect on baseline leukocyte rolling or adhesion in the mesentery. Baseline surface expression of P-selectin was observed in 68.0 ± 9.0% of intestinal venules in ecNOS −/− mice compared with 10.0 ± 2.0% in wild-type mice. Additional studies demonstrated that administration of an anti-P-selectin monoclonal antibody (RB40.34) or the soluble P-selectin ligand, PSGL-1, completely inhibited the increased rolling and firm adhesion response in nNOS −/− and ecNOS −/− mice. Transmigration of neutrophils into the peritoneum following thioglycollate injection was also significantly augmented in nNOS −/− and ecNOS −/− mice. These studies clearly indicate the NO derived from both nNOS and ecNOS is critical in the regulation of leukocyte-endothelial cell interactions.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3