NOS gene transfer inhibits expression of cell cycle regulatory molecules in vascular smooth muscle cells

Author:

Sharma Ram V.1,Tan Enqing1,Fang Shengyun1,Gurjar Milind V.1,Bhalla Ramesh C.1

Affiliation:

1. Department of Anatomy and Cell Biology and The Cardiovascular Center, The University of Iowa College of Medicine, Iowa City, Iowa 52242

Abstract

The mechanisms of nitric oxide (NO)-mediated inhibition of vascular smooth muscle (VSM) cell proliferation are still obscure. Cyclins A and E in association with cyclin-dependent kinase 2 (cdk2) serve as positive regulators for mammalian cell cycle progression through the G1/S checkpoint of the cell cycle and subsequent cell proliferation. Therefore, we have tested the effect of adenovirus-mediated transfection of the endothelial nitric oxide synthase (eNOS) gene into guinea pig coronary VSM cells on platelet-derived growth factor (BB homodimer) (PDGF-BB)-stimulated cell proliferation and the expression of cell cycle regulatory molecules. Transfection of the eNOS gene ( eNOS) into VSM cells significantly inhibited ( P < 0.05) [3H]thymidine incorporation into the DNA in response to PDGF-BB stimulation compared with lacZ-transfected control cells. The eNOS transfer significantly inhibited ( P < 0.05) PDGF-BB-induced proliferating cell nuclear antigen (PCNA) and cyclin A expression in VSM cells compared with cells transfected with the control vector. The time course of cyclin E expression in response to PDGF-BB stimulation was delayed in eNOS-transfected cells. Levels of cyclin-dependent kinase inhibitors p21 and p27 were not significantly affected by eNOStransfer. eNOS transfer did not decrease PDGF-β receptor number, affinity, and autophosphorylation measured by radioreceptor assay and Western analysis. These results suggest that inhibition of PDGF-stimulated expression of cyclin A, cyclin E, and PCNA is the target of NO action. These findings could explain, at least in part, NO-mediated inhibition of VSM cell proliferation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3