Effect of pacing site on ventricular fibrillation initiation by shocks during the vulnerable period

Author:

Idriss Salim F.12,Wolf Patrick D.2,Smith William M.3,Ideker Raymond E.3

Affiliation:

1. Department of Pathology and School of Medicine, Duke University Medical Center, Durham 27710;

2. Department of Biomedical Engineering and the Engineering Research Center for Emerging Cardiovascular Technologies, School of Engineering, Duke University, Durham, North Carolina 27706; and

3. Departments of Medicine and Physiology, University of Alabama at Birmingham, Birmingham, Alabama 35233

Abstract

The critical point hypothesis for the upper limit of vulnerability (ULV) states that the site of S1 pacing should not affect the ULV S2 shock strength for a single S2 shock electrode configuration but may affect the S1-S2 interval at which sub-ULV shocks induce ventricular fibrillation (VF). Furthermore, early post-S2 activations leading to VF should arise in areas with low potential gradients of similar magnitude, regardless of the S1 site. This hypothesis was tested in 10 pigs by determining ULVs for three S1 sites [left ventricular apex (LVA), LV base (LVB), and right ventricular outflow tract (RVOT)] with one S2 configuration (LVA patch to superior vena cava catheter). T-wave scanning was performed with biphasic S2 shocks incremented from 60 V in 40-V steps and stepped up or down in 20- and 10-V steps. Activations and S2 potential gradients were recorded at 528 epicardial sites. Although shocks just below the ULV induced VF significantly earlier in the T wave when the S1 site was the RVOT than when it was the LVA or LVB, ULVs were not significantly different for the three S1 pacing sites. Early post-S2 activations arose closer to the S2 electrode for weak S2s but moved to distant low potential gradient areas as the S2 strengthened. Just below the ULV, early post-S2 activations arose in the RVOT when the S1 site was the LVA or LVB but arose along the RV base when the S1 site was the RVOT. Early site potential gradients were not significantly different just below the ULV (LVA: 8.2 ± 4.1 V/cm; LVB: 8.6 ± 4.9 V/cm; RVOT: 8.7 ± 4.4 V/cm). At the ULV, early post-S2 activations arose from the same areas but did not induce VF. The results support the critical point hypothesis for the ULV. For this S2 configuration, no single point in the T wave could be used to determine the ULV for all S1 sites.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3