Transmural metabolic heterogeneity at high cardiac work states

Author:

Gong Guangrong1,Uğurbil Kâmil1,Zhang Jianyi1

Affiliation:

1. Departments of Medicine and Radiology and the Center for Magnetic Resonance Research, University of Minnesota Health Sciences Center, Minneapolis, Minnesota 55417

Abstract

This study compared the transmural distribution of high-energy phosphate (HEP) depletion during oxidative stress induced by pacing- and dobutamine-induced tachycardia in myocardium perfused by a flow-limiting coronary stenosis. Myocardial blood flow (MBF) was measured with radioactive microspheres. Creatine phosphate (CrP), ATP, and Pi were measured with transmurally localized 31P NMR spectroscopy. In normal dogs a hydraulic occluder was used to produce a left anterior descending coronary artery stenosis, which maintained constant flow measured with a Doppler probe. Tachycardia was induced by rapid pacing (200 beats/min, n = 11) or by dobutamine infusion (20 μg ⋅ kg−1 ⋅ min−1 iv, n = 13) to produce a similar heart rate. In the presence of stenosis, pacing and dobutamine caused similar reductions of subendocardial (Endo)-to-subepicardial (Epi) MBF ratios (0.66 ± 0.06 vs. 0.63 ± 0.08, respectively). Stenosis plus pacing caused a decrease of the CrP-to-ATP ratio (CrP/ATP) in Endo from 2.00 ± 0.07 to 1.65 ± 0.08 ( P < 0.05) with no significant change in Epi. Stenosis plus dobutamine caused HEP changes across the left ventricular wall, which were most marked in the outer myocardial layer (Epi CrP/ATP decreased from 2.33 ± 0.11 to 1.67 ± 0.12; Endo CrP/ATP decreased from 1.99 ± 0.09 to 1.64 ± 0.12). Thus HEP changes during oxidative stress that are produced by pacing parallel the pattern of hypoperfusion and are most severe in the subendocardium. In contrast, in response to inotropic stimulation, the transmural metabolic changes did not correspond to the pattern of the hypoperfusion.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated Functions of Cardiac Energetics, Mechanics, and Purine Nucleotide Metabolism;Comprehensive Physiology;2023-12-29

2. Modelling cardiomyocyte energetics;Modeling and Simulating Cardiac Electrical Activity;2020-12

3. Transmurally differentiated measurement of ATP hydrolysis rates in the in vivo porcine hearts;Magnetic Resonance in Medicine;2016-02-19

4. Regulation of cardiac cellular bioenergetics: mechanisms and consequences;Physiological Reports;2015-07

5. Simulation of cellular biochemical system kinetics;Wiley Interdisciplinary Reviews: Systems Biology and Medicine;2010-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3