Affiliation:
1. Departments of Anesthesiology and Physiology, Medical College of Wisconsin and Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
Abstract
The purpose of this study was to determine whether the autonomic nervous system is involved in skeletal muscle vasodilation at the onset of exercise. Mongrel dogs ( n = 7) were instrumented with flow probes on both external iliac arteries. Before treadmill exercise at 3 miles/h, 0% grade, hexamethonium (10 mg/kg) and atropine (0.2 mg/kg) or saline was infused intravenously. Ganglionic blockade increased resting heart rate from 87 ± 5 to 145 ± 8 beats/min ( P < 0.01) and reduced mean arterial pressure from 100 ± 4 to 88 ± 5 mmHg ( P < 0.01). During steady-state exercise, heart rate was unaffected by ganglionic blockade (from 145 ± 8 to 152 ± 5 beats/min), whereas mean arterial pressure was reduced (from 115 ± 4 to 72 ± 4 mmHg; P < 0.01). Immediate and rapid increases in iliac blood flow and conductance occurred with initiation of exercise with or without ganglionic blockade. Statistical analyses of hindlimb conductance at 5-s intervals over the first 30 s of exercise revealed a statistically significant difference between the control and ganglionic blockade conditions at 20, 25, and 30 s ( P < 0.01) but not at 5, 10, and 15 s of exercise. Hindlimb conductance at 1 min of exercise was 9.21 ± 0.68 and 11.82 ± 1.32 ml ⋅ min−1 ⋅ mmHg−1for the control and ganglionic blockade conditions, respectively. Because ganglionic blockade did not affect the initial rise in iliac conductance, we concluded that the autonomic nervous system is not essential for the rapid vasodilation in active skeletal muscle at the onset of exercise in dogs. Autonomic control of skeletal muscle blood flow during exercise is manifested through vasoconstriction and not vasodilation.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献