Fourier analysis of fluctuations of oxygen tension and blood flow in R3230Ac tumors and muscle in rats

Author:

Braun Rod D.1,Lanzen Jennifer L.1,Dewhirst Mark W.1

Affiliation:

1. Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710

Abstract

Tumor hypoxia is a major barrier to tumor radiation therapy. Typically tumor hypoxia occurs in two forms: chronic and acute. Although the existence of acute hypoxia has long been acknowledged, its temporal characteristics have never been directly measured and documented. In this study tumor[Formula: see text], blood flow (BF), and arterial blood pressure (BP) were measured simultaneously in nine Fischer 344 rats bearing R3230Ac rat mammary adenocarcinomas in the subcutis of the left hindleg. We measured [Formula: see text] at a single location for 36–125 min using recessed-tip oxygen microelectrodes. Simultaneously, we measured tumor BF at two sites within the tumor using laser-Doppler flowmetry (LDF). Similar recordings were made in the quadriceps muscle of seven non-tumor-bearing rats. The [Formula: see text], tumor BF, and BP records were subjected to Fourier analysis.[Formula: see text] and BF showed low-frequency fluctuations (<2 cycles/min) in both tumor and muscle, but the magnitude of the changes in tumor was greater. Tumor BF showed more activity at low frequencies than muscle BF, and the magnitude tended to be greater. No strong correlations were found between[Formula: see text] and BF power spectra for either tumor or muscle or between the frequency patterns of BP and tumor[Formula: see text] spectra. These results quantitatively demonstrate, for the first time, that BF and[Formula: see text] fluctuate at very low frequencies in tumors. In addition to having biological significance for tumor therapy, these fluctuations may have the potential to alter tumor cell behavior via induction of hypoxia reoxygenation injury and/or altered gene expression.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3