Impaired cerebral vasodilator responses to NO and PDE V inhibition after subarachnoid hemorrhage

Author:

Sobey Christopher G.1,Quan Lilly1

Affiliation:

1. Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3052, Australia

Abstract

Subarachnoid hemorrhage (SAH) is associated with impaired nitric oxide (NO)-mediated cerebral vasodilatation. We tested the hypothesis that SAH causes alterations in the production of, hydrolysis of, or responsiveness to cGMP in the rat basilar artery in vivo. Rats were injected with saline or autologous blood into the cisterna magna. Two days later, effects of vasoactive drugs on basilar artery diameter were examined using a cranial window preparation. Vasodilator responses to ACh, sodium nitroprusside (SNP), and low concentrations (≤10−5 M) of zaprinast, an inhibitor of phosphodiesterase V (PDE V), were impaired in SAH rats ( P < 0.05). In contrast, vasodilator responses to adenosine and 8-BrcGMP were similar in control and SAH rats. Vasoconstrictor responses to 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one, an inhibitor of soluble guanylate cyclase, were unaffected by SAH. In the presence of zaprinast (10−5–10−4 M), responses to ACh and SNP were equivalent in control and SAH rats. Thus an increased rate of cGMP hydrolysis by PDE V may be a major factor contributing to the impairment of NO-mediated cerebral vasodilatation after SAH.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3