Affiliation:
1. Department of Surgery, Erasmus University of Rotterdam, 3015 GD Rotterdam; and
2. Department of Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
Abstract
Myocardial hypertrophy decreases the muscle mass-to-vascularization ratio, thereby changing myocardial perfusion. The effect of these changes on myocardial oxygenation in hypertrophic Langendorff-perfused rat hearts was measured using epimyocardial NADH videofluorimetry, whereby ischemic myocardium displays a high fluorescence intensity. Hypertrophic hearts, in contrast to control hearts, developed ischemic areas during oxygen-saturated Langendorff perfusion. Reoxygenation of control hearts after a hypoxic episode resulted in a swift decrease of fluorescence in a heterogeneous pattern of small, evenly dispersed, highly fluorescent patches. Identical patterns could be evoked by occluding capillaries with microspheres 5.9 μm in diameter. Ten seconds after reoxygenation there were no more dysoxic areas, whereas reoxygenation in hypertrophic hearts showed larger ischemic areas that took significantly longer to return to normoxic fluorescence intensities. Hypothesizing that the larger areas originate at a vascular level proximal to the capillary network, we induced hypoxic patterns by embolizing control hearts with microspheres 9.8 and 15 μm in diameter. The frequency distribution histograms of these dysoxic surface areas matched those of hypertrophic hearts and differed significantly from those of hearts embolized with 5.9-μm microspheres. These results suggest the existence of areas in hypertrophic Langendorff-perfused hearts with suboptimal vascularization originating at the arteriolar and/or arterial level.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献