Minimal model of arterial chaos generated by coupled intracellular and membrane Ca2+oscillators

Author:

Parthimos D.1,Edwards D. H.1,Griffith T. M.1

Affiliation:

1. Department of Diagnostic Radiology, Cardiovascular Sciences Research Group, University of Wales College of Medicine, Cardiff CF4 4XN, United Kingdom

Abstract

We have developed a mathematical model of arterial vasomotion in which irregular rhythmic activity is generated by the nonlinear interaction of intracellular and membrane oscillators that depend on cyclic release of Ca2+ from internal stores and cyclic influx of extracellular Ca2+, respectively. Four key control variables were selected on the basis of the pharmacological characteristics of histamine-induced vasomotion in rabbit ear arteries: Ca2+ concentration in the cytosol, Ca2+ concentration in ryanodine-sensitive stores, cell membrane potential, and the open state probability of Ca2+-activated K+ channels. Although not represented by independent dynamic variables, the model also incorporates Na+/Ca2+exchange, the Na+-K+-ATPase, Cl fluxes, and Ca2+ efflux via the extrusion ATPase. Simulations reproduce a wide spectrum of experimental observations, including 1) the effects of interventions that modulate the functionality of Ca2+ stores and membrane ion channels, 2) paradoxes such as the apparently unpredictable dual action of Ca2+ antagonists and low extracellular Na+ concentration, which can abolish vasomotion or promote the appearance of large-amplitude oscillations, and 3) period-doubling, quasiperiodic, and intermittent routes to chaos. Nonlinearity is essential to explain these diverse patterns of experimental vascular response.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3