Affiliation:
1. Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332; and
2. Division of Cardiology, Emory University, Atlanta, Georgia 30032
Abstract
Extracellular matrix components must be degraded and resynthesized for vascular remodeling to occur. We hypothesized that the hemodynamic environment regulates activity of matrix metalloproteinases (MMPs), the primary agents for in vivo matrix degradation, during vascular remodeling in response to changes in transmural pressure and shear stress. Pathological hemodynamic conditions were reproduced in an ex vivo system in which we maintained porcine carotid arteries for 24 and 48 h. Total levels of MMP-2 and MMP-9 extracted from tissue homogenates and analyzed by SDS-PAGE zymography were stimulated by transmural pressure and were unaffected by shear stress changes. Degradation of two specific gelatinase substrates, gelatin and elastin, increased with increasing pressure, but the degradation was not affected by shear stress changes in tissue specimens analyzed using in situ zymography (gelatin) and fluorescent measurement of endogenous elastin degradation (elastin). Our results suggest that transmural pressure activates at least two members of the MMP family and that activity of these enzymes is accompanied by degradation of matrix components, effects that may be implicated in hypertensive vascular remodeling.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献