Regional ischemia in hypertrophic Langendorff-perfused rat hearts

Author:

Ashruf J. F.1,Ince C.2,Bruining H. A.1

Affiliation:

1. Department of Surgery, Erasmus University of Rotterdam, 3015 GD Rotterdam; and

2. Department of Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands

Abstract

Myocardial hypertrophy decreases the muscle mass-to-vascularization ratio, thereby changing myocardial perfusion. The effect of these changes on myocardial oxygenation in hypertrophic Langendorff-perfused rat hearts was measured using epimyocardial NADH videofluorimetry, whereby ischemic myocardium displays a high fluorescence intensity. Hypertrophic hearts, in contrast to control hearts, developed ischemic areas during oxygen-saturated Langendorff perfusion. Reoxygenation of control hearts after a hypoxic episode resulted in a swift decrease of fluorescence in a heterogeneous pattern of small, evenly dispersed, highly fluorescent patches. Identical patterns could be evoked by occluding capillaries with microspheres 5.9 μm in diameter. Ten seconds after reoxygenation there were no more dysoxic areas, whereas reoxygenation in hypertrophic hearts showed larger ischemic areas that took significantly longer to return to normoxic fluorescence intensities. Hypothesizing that the larger areas originate at a vascular level proximal to the capillary network, we induced hypoxic patterns by embolizing control hearts with microspheres 9.8 and 15 μm in diameter. The frequency distribution histograms of these dysoxic surface areas matched those of hypertrophic hearts and differed significantly from those of hearts embolized with 5.9-μm microspheres. These results suggest the existence of areas in hypertrophic Langendorff-perfused hearts with suboptimal vascularization originating at the arteriolar and/or arterial level.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3