Effects of long-term, high-altitude hypoxia on the capillarity of the ovine fetal heart

Author:

Lewis A. M.1,Mathieu-Costello O.2,McMillan P. J.1,Gilbert R. D.1

Affiliation:

1. Center for Perinatal Biology, Loma Linda University, Loma Linda 92350; and

2. Department of Physiology, School of Medicine, University of California, San Diego, La Jolla, California 92093

Abstract

To determine the effect of chronic hypoxia on myocardial capillarity, we exposed pregnant ewes to an altitude of 3,820 m from day 30 to day 139 of gestation and compared the fetus to low-altitude (∼300 m) controls. We hypothesized that capillarity would increase in the hypoxic myocardium to optimize oxygen and metabolite flux to hypoxic tissues. Fetal hearts were fixed by retrograde aortic perfusion and processed for microscopy and stereological evaluation. Fiber cross-sectional area and capillary density were measured and standardized to sarcomere length. Capillary volume density and capillary diameter were measured, capillary-to-fiber ratio and capillary length density were calculated, and the capillary anisotropy coefficient was obtained from a table of known values. Capillary-to-fiber ratio, capillary volume density, and the capillary anisotropy coefficient were not different between hypoxia and control groups. Capillary diameter was significantly larger in the right compared with the left ventricle of hypoxic but not control hearts; fiber cross-sectional area tended to be larger in the right ventricle of both groups, but this was not significant. As a result of larger fiber size, capillary density and capillary length density were significantly smaller in the right ventricle of hypoxic but not control fetal hearts. Contrary to our hypothesis, the ovine fetus does not show morphological adaptation in the myocardium after ∼109 days of high-altitude hypoxic stress.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3