Affiliation:
1. Cardiac Muscle Research Laboratory, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
Abstract
We examined the relationship between age-associated lusitropic impairment, heart rate, and Ca2+-handling proteins and assessed the efficacy of increasing left ventricular (LV) relaxation via β-adrenergic stimulation in adult and aging mouse hearts. LV function was measured in isolated, isovolumic blood-perfused hearts from adult (5 mo), old (24 mo), and senescent (34 mo) mice. Hearts were paced from 5 to 10 Hz, returned to 7 Hz, exposed to 10−6 M isoproterenol, and paced again from 7 to 10 Hz. Age-related alterations in Na+/Ca2+exchanger (NCX), sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a), and phospholamban (PLB) levels were assessed by immunoblot. Despite preserved contractile performance, aging caused impaired lusitropy. Increased pacing caused an elevation in end-diastolic pressure that progressively worsened with age. The time constant of isovolumic pressure decay (τ) was significantly prolonged in old and senescent hearts compared with adults. Relative to adult hearts, the SERCA2a-to-PLB ratios were reduced 68 and 69%, and NCX were reduced 37 and 58% in old and senescent hearts, respectively. Isoproterenol completely reversed the age-associated lusitropic impairments. These data suggest that impaired lusitropy in aging mouse hearts is related to a decreased rate of cytosolic Ca2+ removal and that accelerating SR Ca2+ resequestration via β-adrenergic stimulation can reverse this impairment.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献