Myocardial oxygenation in vivo: optical spectroscopy of cytoplasmic myoglobin and mitochondrial cytochromes

Author:

Arai Andrew E.1,Kasserra Claudia E.1,Territo Paul R.1,Gandjbakhche Amir H.2,Balaban Robert S.1

Affiliation:

1. Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, and

2. Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892

Abstract

The oxygenation state of myoglobin and the redox state of cytochrome c provide information on the[Formula: see text] in the cytosol and mitochondria, respectively. An optical “window” from ∼540 to 585 nm was found in the pig heart in vivo that permitted the monitoring of myoglobin and cytochrome c without interference from Hb oxygenation or blood volume. Scanning reflectance spectroscopy was performed on the surgically exposed left ventricle of pigs. Difference spectra between control and a total left anterior descending coronary artery occlusion revealed maxima and minima in this spectral region consistent with myoglobin deoxygenation and cytochrome c and b reduction. Comparison of in vivo data with in vitro fractions of the heart, including Hb-free tissue whole heart and homogenates, mitochondria, myoglobin, and pig red blood cells, reveals minimal contributions of Hb in vivo. This conclusion was confirmed by expanding the blood volume of the myocardium and increasing mean Hb O2 saturation with an intracoronary infusion of adenosine (20 μg ⋅ kg−1 ⋅ min−1), which had no significant effect on the 540- to 585-nm region. These results also suggested that myoglobin O2 saturation was not blood flow limited under these conditions in vivo. Work jump studies with phenylephrine also failed to change cytochrome c redox state or myoglobin oxygenation. Computer simulations using recent physical data are consistent with the notion that myoglobin O2 saturation is >92% under basal conditions and does not change significantly with moderate workloads. These studies show that reflectance spectroscopy can assess myocardial oxygenation in vivo. Myoglobin O2 saturation is very high and is not labile to moderate changes in cardiac workload in the open-chest pig model. These findings indicate that myoglobin does not contribute significantly to O2 transport via facilitated diffusion under these conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3