High aminopeptidase A activity contributes to blood pressure control in ob/ob mice by AT2 receptor-dependent mechanism

Author:

Morais Rafael L.1,Hilzendeger Aline M.1,Visniauskas Bruna2,Todiras Mihail3,Alenina Natalia3,Mori Marcelo A.1,Araújo Ronaldo C.1,Nakaie Clovis R.1,Chagas Jair R.2,Carmona Adriana K.1,Bader Michael3456,Pesquero João B.1

Affiliation:

1. Departamento de Biofísica, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, Brazil;

2. Departamento de Psicobiologia, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, Brazil;

3. Max-Delbrück-Center for Molecular Medicine, Berlin, Germany;

4. Charité University Medicine Berlin, Berlin, Germany;

5. German Center for Cardiovascular Research, Berlin, Germany; and

6. Institute for Biology, University of Lübeck, Lübeck, Germany

Abstract

Obesity is assumed to be a major cause of human essential hypertension; however, the mechanisms responsible for weight-related increase in blood pressure (BP) are not fully understood. The prevalence of hypertension induced by obesity has grown over the years, and the role of the renin-angiotensin-aldosterone system (RAAS) in this process continues to be elucidated. In this scenario, the ob/ob mice are a genetic obesity model generally used for metabolic disorder studies. These mice are normotensive even though they present several metabolic conditions that predispose them to hypertension. Although the normotensive trait in these mice is associated with the poor activation of sympathetic nervous system by the lack of leptin, we demonstrated that ob/ob mice present massively increased aminopeptidase A (APA) activity in the circulation. APA enzyme metabolizes angiotensin (ANG) II into ANG III, a peptide associated with intrarenal angiotensin type 2 (AT2) receptor activation and induction of natriuresis. In these mice, we found increased ANG-III levels in the circulation, high AT2 receptor expression in the kidney, and enhanced natriuresis. AT2 receptor blocking and APA inhibition increased BP, suggesting the ANG III-AT2 receptor axis as a complementary BP control mechanism. Circulating APA activity was significantly reduced by weight loss independently of leptin, indicating the role of fat tissue in APA production. Therefore, in this study we provide new data supporting the role of APA in BP control in ob/ob mouse strain. These findings improve our comprehension about obesity-related hypertension and suggest new tools for its treatment. NEW & NOTEWORTHY In this study, we reported an increased angiotensin III generation in the circulation of ob/ob mice caused by a high aminopeptidase A activity. These findings are associated with an increased natriuresis found in these mice and support the role of renin-angiotensin-aldosterone system as additional mechanism regulating blood pressure in this genetic obese strain.

Funder

São Paulo Research Foundation (FAPESP)

Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3